Relation Classification via Recurrent Neural Network
نویسندگان
چکیده
Deep learning has gained much success in sentence-level relation classification. For example, convolutional neural networks (CNN) have delivered competitive performance without much effort on feature engineering as the conventional patternbased methods. Thus a lot of works have been produced based on CNN structures. However, a key issue that has not been well addressed by the CNN-based method is the lack of capability to learn temporal features, especially long-distance dependency between nominal pairs. In this paper, we propose a simple framework based on recurrent neural networks (RNN) and compare it with CNN-based model. To show the limitation of popular used SemEval-2010 Task 8 dataset, we introduce another dataset refined from MIMLRE(Angeli et al., 2014). Experiments on two different datasets strongly indicates that the RNN-based model can deliver better performance on relation classification, and it is particularly capable of learning long-distance relation patterns. This makes it suitable for real-world applications where complicated expressions are often involved.
منابع مشابه
Combining Recurrent and Convolutional Neural Networks for Relation Classification
This paper investigates two different neural architectures for the task of relation classification: convolutional neural networks and recurrent neural networks. For both models, we demonstrate the effect of different architectural choices. We present a new context representation for convolutional neural networks for relation classification (extended middle context). Furthermore, we propose conn...
متن کاملSemantic Relation Classification via Hierarchical Recurrent Neural Network with Attention
Semantic relation classification remains a challenge in natural language processing. In this paper, we introduce a hierarchical recurrent neural network that is capable of extracting information from raw sentences for relation classification. Our model has several distinctive features: (1) Each sentence is divided into three context subsequences according to two annotated nominals, which allows...
متن کاملMultiple Range-Restricted Bidirectional Gated Recurrent Units with Attention for Relation Classification
Most of neural approaches to relation classification have focused on finding short patterns that represent the semantic relation using Convolutional Neural Networks (CNNs) and those approaches have generally achieved better performances than using Recurrent Neural Networks (RNNs). In a similar intuition to the CNN models, we propose a novel RNN-based model that strongly focuses on only importan...
متن کاملA Latent Variable Recurrent Neural Network for Discourse Relation Language Models
This paper presents a novel latent variable recurrent neural network architecture for jointly modeling sequences of words and (possibly latent) discourse relations that link adjacent sentences. A recurrent neural network generates individual words, thus reaping the benefits of discriminatively-trained vector representations. The discourse relations are represented with a latent variable, which ...
متن کاملClassifying Relations via Long Short Term Memory Networks along Shortest Dependency Paths
Relation classification is an important research arena in the field of natural language processing (NLP). In this paper, we present SDP-LSTM, a novel neural network to classify the relation of two entities in a sentence. Our neural architecture leverages the shortest dependency path (SDP) between two entities; multichannel recurrent neural networks, with long short term memory (LSTM) units, pic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1508.01006 شماره
صفحات -
تاریخ انتشار 2015